Origin of long lifetime of band-edge charge carriers in organic-inorganic lead iodide perovskites.

نویسندگان

  • Tianran Chen
  • Wei-Liang Chen
  • Benjamin J Foley
  • Jooseop Lee
  • Jacob P C Ruff
  • J Y Peter Ko
  • Craig M Brown
  • Leland W Harriger
  • Depei Zhang
  • Changwon Park
  • Mina Yoon
  • Yu-Ming Chang
  • Joshua J Choi
  • Seung-Hun Lee
چکیده

Long carrier lifetime is what makes hybrid organic-inorganic perovskites high-performance photovoltaic materials. Several microscopic mechanisms behind the unusually long carrier lifetime have been proposed, such as formation of large polarons, Rashba effect, ferroelectric domains, and photon recycling. Here, we show that the screening of band-edge charge carriers by rotation of organic cation molecules can be a major contribution to the prolonged carrier lifetime. Our results reveal that the band-edge carrier lifetime increases when the system enters from a phase with lower rotational entropy to another phase with higher entropy. These results imply that the recombination of the photoexcited electrons and holes is suppressed by the screening, leading to the formation of polarons and thereby extending the lifetime. Thus, searching for organic-inorganic perovskites with high rotational entropy over a wide range of temperature may be a key to achieve superior solar cell performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vapour-Deposited Cesium Lead Iodide Perovskites: Microsecond Charge Carrier Lifetimes and Enhanced Photovoltaic Performance

Metal halide perovskites such as methylammonium lead iodide (MAPbI3) are highly promising materials for photovoltaics. However, the relationship between the organic nature of the cation and the optoelectronic quality remains debated. In this work, we investigate the optoelectronic properties of fully inorganic vapour-deposited and spin-coated black-phase CsPbI3 thin films. Using the time-resolv...

متن کامل

Are Mobilities in Hybrid Organic-Inorganic Halide Perovskites Actually "High"?

The outstanding performance of hybrid organic-inorganic perovskites (HOIPs) in photovoltaic devices is made possible by, among other things, outstanding semiconducting properties: long real charge-carrier diffusion lengths, L, of up to 5 and possibly even 10 μm, as well as a lifetime, τ of ~1 μs or more in single crystal and polycrystalline films. 1–9 Top electronic transport materials will hav...

متن کامل

Are Mobilities in Hybrid Organic−Inorganic Halide Perovskites

Actually “High”? T outstanding performance of hybrid organic−inorganic perovskites (HOIPs) in photovoltaic (PV) devices is made possible by, among other things, outstanding semiconducting properties: long real charge carrier diffusion lengths, L, of up to 5 and possibly even 10 μm, as well as a lifetime τ of ∼1 μs or more in single-crystal and polycrystalline films. Top electronic transport mat...

متن کامل

Localized holes and delocalized electrons in photoexcited inorganic perovskites: Watching each atomic actor by picosecond X-ray absorption spectroscopy

We report on an element-selective study of the fate of charge carriers in photoexcited inorganic CsPbBr3 and CsPb(ClBr)3 perovskite nanocrystals in toluene solutions using time-resolved X-ray absorption spectroscopy with 80 ps time resolution. Probing the Br K-edge, the Pb L3-edge, and the Cs L2-edge, we find that holes in the valence band are localized at Br atoms, forming small polarons, whil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 29  شماره 

صفحات  -

تاریخ انتشار 2017